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New Kids on the Block

Connectionist Models is a collection of forty papers representing a wide variety of
research topics in connectionism. The book is distinguished by a single feature:
the papers are almost exclusively contributions of graduate students active in the
field. The students were selected by a rigorous review process and participated
in a two week long summer school devoted to connectionism?. As the ambitious
editors state in the foreword:

The forty papers in this volume exemplify the tremendous breadth
of research under way in the field of connectionist modeling. ... The
papers selected for this proceedings offer an intense, pithy snapshot
of the state of the art in 1990. ... [The students] are among the best
and the brightest in the neural nets game. (Page vii)

These are bold claims and, if true, the reader is presented with an exciting
opportunity to sample the frontiers of connectionism. Their words imply two
ways to approach the book. The book must be read not just as a random
collection of scientific papers, but also as a challenge to evaluate a controversial

field.

!(Morgan Kaufmann, San Mateo, CA, 1991); 404 pages, US$?? (paperback). ISBN 0-
55860-156-2.

2This summer school is actually the third in a series, previous ones being held in 1986 and
1988. The proceedings of the 1988 summer school (which I had the priviledge of participating
in) are reviewed by Nigel Goddard in [4]. Continuing the pattern, a fourth school is scheduled
to be held in 1993 in Boulder, CO.




The editors are right to be proud of this volume. The quality of the pa-
pers is high, being generally well-written, concise, and insightful. The book,
however, is not an easy collection to digest. There is a wide range of topics
with the papers varying significantly in the level of sophistication required of
the reader. The book is organized into ten parts, with headings that range from
“Mean Field, Boltzmann, and Hopfield networks” to simply “Biology”. Within
these sections there are articles which require previous experience with a par-
ticular methodology. Consider Dayan’s article on reinforcement learning which
explores a subtle second order effect in a learning algorithm proposed by Sutton.
The conscientious reader will discover an interesting analysis of an important
learning scenario but this does require some work. (Dayan shows that there is
a second order effect but perhaps not a significant amount.) On the other hand
there are several articles written for audiences with more diverse backgrounds.
In particular, the articles by Miller and Todd, Goodhill, Wieland, Plunkett et
al, and Lange et al provide good introductions to their topics before delving into
details.

It would be foolhardy to attempt a review of every paper in the collection.
Instead, the review will focus on sets of papers which contribute to some im-
portant themes in a coherent fashion. These themes have played important
roles in non-connectionist Al as well as connectionism and as such provide good
benchmarks for evaluating the field.

Connectionist Language and Cognitive Processing

The largest section of the book is devoted to connectionist models of language
and cognitive processing. A central theme concerns the claim that many cog-
nitive faculties thought to be dominated by rule-based systems can also be
explained as a structured system of mappings from input to output vectors.
We’ll consider three such papers and one that represents a different viewpoint.

Plunkett et al have written a very good article on the learning of verb mor-
phology in children. Several experiments have shown that children go through
three distinct phases in learning the past tenses of verbs. In the first phase chil-
dren produce past tenses correctly, even for irregular verbs. During the second
phase, they start making mistakes, typically overgeneralizing rules for regular
verbs to irregular verbs (e.g. “I goed home.”). After some time there is a tran-
sition to the final phase, where there are no more errors. The traditional expla-
nation for this is that during the first phase children learn by rote, storing past
tenses in a lexicon. After some time they start incorporating rules governing the
production of past tenses, but haven’t yet learned the exceptions. Finally they
learn both the exceptions and the rules. Rumelhart and McClelland[8] showed
that such behavior can be reproduced by a feed-forward network learning map-
pings between verbs and their past tenses. However their model has been beset
by controversy, particularly due to their unnatural training scheme. The Plun-
kett et al paper presents a much more thorough set of experiments that consider



the effects of some of these factors. The key result is that the learning curves
of children can be reproduced under a large variety of training regimes. They
clearly show that such behavior can emerge from a general purpose learning
algorithm extracting regularities from the environment. They make the point
that a single system is capable of producing the desired behavior (as opposed to
a dual system consisting of a lexicon plus a rule-extracting mechanism). Their
final conclusion however seems a bit puzzling:

Thus, evaluations of network performance on novel verbs (in compar-
ison to patterns of errors across learning) suggests that the network,
like the child, is best characterized as a rule-governed system. (Page
217)

The whole point of the Rumelhart and McClelland paper, which they clearly
support, is to prove the opposite: that the acquisition of verb morphology,
a seemingly rule-governed system, can be characterized as a general network
learning a set of mappings from vectors to vectors.

This general theme is developed further by Touretzky, one of the faculty
contributers. His paper models part of the process of deriving surface phonetics
from underlying phonemes. He shows that a highly constrained set of feed-
forward networks of limited depth can be used to implement these derivations.
The twist here is the emphasis on the word “constrained”. Unlike the previous
paper, Touretzky’s network is not a general purpose one. It can perform only a
limited set of mappings. Their hypothesis is that this set is exactly equal to those
manipulations seen in human languages. The model is one where predictions
can be stated precisely and therefore one that can be easily refuted. It will be
interesting to see how well i1t holds up in the future.

Jennings and Keele present a model of sequence learning based on simple
recurrent networks. They show that by appropriately picking input patterns one
can reproduce the response curves of people in a variety of sequence learning
tasks. The paper models experimental results which show that certain sequences
cannot be learned by humans without some form of attention. In particular
sequences where the next item is not uniquely predicted by the previous item
are difficult to learn while performing a distracting task (e.g. 1-3-2-3-1-2 is
difficult but 1-3-2-1-3-2 is easy). A recurrent network with extra “plan inputs”
is trained with such sequences. Without additional information, the network
exhibits difficulties in learning sequences of the first type. When the plan units
encode extra hierarchical information about the current block within a sequence,
the network learns faster. The claim is that this corresponds to an attention-
based hierarchical parsing of sequences by humans. Unfortunately this article
demonstrates some of the dangers of blindly applying connectionist networks to
psychophysics. For example, there is no convincing argument that hierarchical
inputs are required. There is probably a variety of ways to get the network to
learn the difficult sequences. The network might exhibit the same behavior if
random vectors are associated with each block. In addition, the learning curves



are likely to fluctuate quite a bit depending on the number of hidden units, the
learning parameters, and so on. A more careful analysis of such factors (none of
the above are mentioned in the paper) would greatly strengthen the claims. As
it stands, the relationship between the network’s behavior and human behavior
is not at all clear.

In contrast to the previous three papers, the article by Lange et al describes a
highly structured frame-based connectionist system. The flavor is more akin to
semantic networks than vector mappings. The paper presents a well thought out
integrated model of language understanding and analogical inferencing (struc-
tural and semantic). The main feature here is the ability to perform relatively
complex linguistic inferences in parallel. The authors construct a network whose
connectivity structure reflects the underlying predicates and the relationships
between them. The key to this process is a scheme for dynamic variable binding
using unique patterns of activity. With this tool, sets of variable instantia-
tions are propagated through the network. When the network settles, nodes
with the highest confidence values represent the most plausible interpretation.
Although it is difficult to imagine the network scaling up to deal with whole
stories, the authors do present impressive examples using short sequences of
ambiguous sentences. Unfortunately the description of the complete network is
somewhat involved and the few pages allocated to it are hardly sufficient. To
get a complete understanding, the reader should look up some of the references
to their other work.

Learning and Generalization

Almost all of the papers in this book incorporate learning to some extent. In-
cluded among these are a good set of papers that study learning itself. Here we
consider two that deal with the following question: given a fixed training set,
what can we say or do about the eventual generalization?

Back-propagation is the learning algorithm used in most connectionist mod-
els. When there is a large set of training examples, the learning algorithm
usually leads to a network that generalizes very well on future unseen exam-
ples. The analysis by Hampshire and Pearlmutter suggest why this is the case.
They show that feed-forward networks, when trained as a classifier, act as opti-
mal Bayesian discriminant functions under a variety of situations. For example
back-propagation using the sum-squared error measure leads to networks whose
outputs encode the maximal a posteriori probabilities of the classes. Unfortu-
nately it is not clear yet how this applies to practical situations: their analysis
is currently limited to the cases where training data tends to infinity and the
training examples are statistically independent.

The second article concerns itself with the opposite case: when the training
set is small. In such situations, there are often several local minima in the
error surface but only some of these correspond to good solutions. During the
1988 summer school, Rumelhart suggested an intriguing modification of back-



propagation designed to attack this problem. The paper by Weigend, Rumelhart
and Huberman in this collection shows that, at least in one domain, the method
works very well and can outperform standard statistical techniques. The basic
idea is to use a version of Occam’s principle: when faced with a choice of
networks, prefer smaller networks over larger ones. The trick is to augment the
standard error measure with a term that penalizes networks with large weights.
The resulting learning rule performs gradient descent in a measure of network
complexity as well as training error. One of the interesting features is that it
tends to automatically eliminate unnecessary parameters and hidden units. The
technique is applied to the prediction of sunspot data, a benchmark problem
in statistics. Surprisingly, the method outperformed the best current statistical
solution. To this day, this remains one of the few results where a connectionist
network does substantially better than the best known traditional solution to a
problem.3

Unsupervised Learning and Clustering

A longstanding and fascinating theme in connectionist learning has been the
automatic development of features through the use of unsupervised learning
rules*. These proceedings contain several good articles which explore various
aspects of this topic. They are a bit scattered around in the book but when
read together provide a coherent picture of many of the issues.

Several researchers (e.g. Linsker[5]) have shown that variants of the gen-
eral Hebb rule can lead to the development of feature detectors similar to those
found in mammalian visual cortex. One of the basic questions is: Is there a sin-
gle learning rule that can account for all cortical development? One of the best
written papers in this collection, by Goodhill, explores this issue. The paper
considers two somewhat distinct processes: the formation of topographic maps
(a common biological phenomenon where neurons physically near one another
respond only to visual stimuli that are similarly near each other) and ocu-
lar dominance columns (where bands of neurons respond exclusively to stimuli
from a single eye). These are two areas with long histories of fruitful interaction
between modeling and experimentation. The paper contains a very good review
of some of this work, both biological and computational. Goodhill then presents
a theoretical framework for dealing with both processes simultaneously. Simu-
lation results show that the model accounts for effects seen under both normal
and abnormal development. Although it cannot account for all the experiments,
perhaps we are one step closer towards a grand unified learning rule.

3See the paper by Nowlan (a participant of the 1988 summer school) and Hinton[6] for a
related approach to this problem. For another famous example of a connectionist network
improving on conventional solutions see the recent paper by Tesauro[10] (a participant of the
1986 summer school) describing a neural network tournament-level backgammon program.

“The interested reader should consult the excellent review article by Becker[2], a 1988
summer school graduate.



Why should there be a single learning rule? One answer is that some learning
rules lead to optimal feature detectors so one rule might suffice. Oja[7] has shown
that a linear Hebb neuron adapts to extract the first principal component of
the covariance of its inputs. In other words, such a neuron learns to detect the
feature which lies along the axis of maximal variance in input space. The article
by Levin extends upon this work. He shows how a set of such neurons can be
networked to extract the first n principal components. Levin’s analysis proves
that his scheme will converge with high probability, but it is currently limited to
linear neurons. Cotrell’s paper briefly discusses a non-linear, supervised scheme
for extracting principal components. As Linsker has argued, such techniques
lead to feature detectors which maximally preserve input information.

But the issue is far from resolved. Any discussion of optimality is meaning-
less without defining the word “optimal”, and this is likely to be goal-dependent.
Intrator argues convincingly that preferring the axis with maximal variance is
often the wrong thing to do if the ultimate goal is classification. He empha-
sizes the difference between features used for classification (where we want to
distinguish between classes) and features used for function estimation or data
compression. Consider a set of points which are widely distributed over the
y-axis but are restricted to two narrow intervals close together on the z-axis.
A feature using the z-axis is clearly best able to separate the cluster. Picking
the axis with maximal variance however would choose the y-axis. Instead Intra-
tor proposes a complementary learning rule, derived from a cost function that
prefers multi-modal distributions. To demonstrate its usefulness, he shows that
the features found by this learning rule perform better on a speech phoneme
classification task. It is unclear though, how different this new learning rule
really is. For example, it is easy to concoct an input distribution such that the
two classes of rules generate identical sets of features (i.e. if the axes with large
variance also contained the most multi-modal distributions). It would certainly
be worth studying the features that evolve if such a network is given random
inputs, as in Linsker’s work. Interestingly, Intrator’s learning rule turns out to
be a modification of a rule that has also been used to explain many aspects of
cortical development, including changes in ocular dominance columns|3].

Planning and Reinforcement Learning

When it comes to generating complex compositional plans, connectionist meth-
ods have yet to reach a high level of performance. There is no system close to
the sophistication of even early AI planners such as STRIPS. Part of the reason
is that the emphasis has been on the difficult problem of learning the correct
sequence of actions necessary to reach a given goal. The key problem to be
solved here is the temporal credit assignment problem: given that the system
gets no reinforcement until the end of a (potentially long) sequence, how should
one credit the intermediate actions? The following two articles provide good
introductions to many of the issues involved.



Algorithms for dealing with temporal credit assignment generally fall into
two categories: those which build internal models of the environment, and those
which do not. The first type typically learns to predict the effect of actions on
the environment and then, given the current state, uses this model to choose
the best next action. The second type simply learns a mapping between current
state and next action. The article by Barto and Singh directly compares these
two methods on a simple task. It is clear the latter method should be computa-
tionally faster. The surprising result is that (at least in one simple task) it can
also perform better.

A second interesting article on this topic is by Schmidhuber, who has tackled
a variety of problems dealing with reinforcement learning. Although not terri-
bly well-written and at a somewhat general level, the article provides a good
introduction to the works of this (very prolific) author. (It is not often that one
sees references of the form Schmidhuber (1990a) through Schmidhuber (1990h)!)
Right at the end one finds perhaps the most interesting part of the paper: a
proposal for learning sub-goal generation. The task is to learn to generate the
correct sequence of sub-goals assuming the sub-goals themselves have already
been learned. The idea is to use a separate evaluator network F which has
already learned the relationship between sub-goals. Given two sub-goals this
network outputs a 1 if the first is reachable from the second. Given start and
goal states S and G, the sub-goal generator should only generate sub-goals S;
such that E(S, S;) and E(S;, G) equals 1. If not, the errors are used to train the
sub-goal generator. Although intriguing, the proposal should be backed up by
simulations. Unfortunately we are only given one paragraph which states sim-
ply that some simulations were tried and they worked. The procedure as given
will also only work for plans with one sub-goal. The author claims that recur-
sive application of it should be capable of generating more complex plans but
no details are given. Interested readers are referred instead to (Schmidhuber,
1990h).

Genetic Algorithms

Three of the papers consider applications of genetic algorithms to connectionist
networks. By simply representing properties of networks as bit strings any
standard genetic algorithm can be invoked. The paper by Wieland shows how
genetic algorithms can be used to evolve recurrent neural network controllers
for various versions of the pole-balacing problem. The simulations show that
good controllers can evolve using only genetic algorithms (no gradient descent
search). The paper is useful for two other reasons: it contains a good set of
references, and also contains the full set of equations necessary to simulate the
standard pole-balancing problem, multiple unjointed poles, and a single jointed
pole.

The other two papers discuss how learning itself might evolve through genetic
adaptation. The bulk of the paper by Miller and Todd reviews the study of



learning and evolution in Psychology. They then make the point that as long
as adaptive pressures favor a learning system then one should evolve. They
present a rather simplistic simulation proving their point. A more interesting
simulation along the same lines is found in Chalmers’ paper. In this work
bit strings denote coefficients of possible learning rules chosen from a restricted
class of linear functions. An “environment” consisting of a number of supervised
boolean learning tasks is used to determine the fitness of the learning rules. This
is clearly not a natural environment but the result is appealing. The rule that
evolves to have the highest fitness turns out to be the well known delta rule (a
specialization of back-propagation for one-layer networks). One can argue that
success in natural environments is the ultimate test of learning rule optimality.
It would be worth trying out a version of this task using unsupervised learning
rules. Perhaps something like the Hebb rule will emerge.

Concluding Remarks

There is so much variety here that it is easy to get immersed in any one of
the above topics. What do the proceedings teach us about the state of connec-
tionism as a field? One of the best ways to evaluate this is to contrast these
papers with older ones. As a participant of the 1988 summer school[11], I am
in a position to compare this school with the previous school. I see at least two
major differences and at least one similarity with 1988. The 1988 proceedings
contained papers that were clearly more experimental in nature whereas these
papers contain more theory to back up claims. In particular, the notion of op-
timality s much more prominent here. It appears in various forms, whether
it is Bayesian optimality, optimal credit assignment, optimal use of computa-
tional resources, optimal learning rules, or optimal feature extraction. A second
key difference is that the papers in the 1988 proceedings heavily emphasized
feed-forward back-propagation style networks. This time around there is signif-
icantly more variation both in the networks and the algorithms used. These are
definitely healthy trends and point to a field that is rapidly maturing.

One major similarity to the previous proceedings is that there is still a
heavy emphasis on learning, whether it is learning plans, language, sequences,
or features. Learning is clearly one of the strengths of connectionism but there
are certainly many other aspects of intelligent behavior which could profit from
a massively parallel approach. This pre-occupation with learning tends to de-
emphasize issues such as control structures, search procedures, and knowledge
based methods which in turn leads to difficulties with topics like reasoning,
plan generation, language understanding, and several complex perceptual tasks.
Touretzky’s phonological model and Lange et al’'s model of analogical inference
show that non-learning connectionist systems can indeed be interesting®, and
provide hope that connectionist methods can provide insights into these hard

5For other examples of such systems see [9, 1].



problems as well.

Despite the above objection it is easy to recommend the book. The atmo-

sphere of intensity and excitement present at these summer schools is clearly

reflected in the proceedings. In part due to the efforts of the faculty, many of
us from the previous schools are still active in the field. I am sure the same will
be true of the 1990 participants. Both the students and the field have benefited
from these summer schools. I look forward to the results of the 1993 school and
hope it will not be the last one.
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