A Usable Real-Time 3D Hand Tracker

Subutai Ahmad
Interval Research Corporation,
1801-C Page Mill Rd., Palo Alto, CA 94304

ahmad@interval.com

Abstract

This paper presents a computer vision system for
tracking human hands. The algorithms used to extract
the 3D position and planar orientation of the hand,
and the joint angles of the fingers are described. The
combined system is able to track a natural hand at 30
frames per second on a standard workstation with no
special image processing hardware other than a frame
grabber. The tracker has been used as an interface for
navigating around virtual worlds.

1 Introduction

Is it feasible to build a practical and non-intrusive
hand tracking device? The answer is at least a partial
”yes”. In this paper I give an overview of two working
systems, based on computer vision, for extracting the
3D position, planar orientation, and the finger joint
angles of natural hands.’

The primary motivation of this work has been the
development of an ideal interface for manipulating
three dimensional objects and for navigating around
three dimensional environments. It is clear that our
hands are our primary means of interacting with our
physical environment. As such our hands have evolved
to be versatile but highly complex devices. In fact, as
children, we spend years mastering their use. Rather
than invent completely new interfaces it is natural to
take advantage of this intense training and attempt to
exploit the way we use our hands.

There are a number of stringent requirements that
must be met in order for a hand tracking system to be
really useful as an interface. First, real time perfor-
mance is critical. In our experience we find that the
latency must be smaller than 100 milliseconds for the
system to be bearable, and should really be smaller
than 50 msecs for extended use. This agrees qual-
itatively with the psychophysical literature on “the
psychological moment”[6] (briefly: visual events that
occur within 100 milliseconds are naturally integrated,
events that occur outside that time window are not).
Second, we must use technologies that keep the user
as unencumbered as possible. The system should be
able to extract the desired information without requir-
ing the user to wear gloves, wires, or other encumber-
ances as with the DataGlove[9].

1 Gesture recognition, or the task of interpreting the hand
configuration, is beyond the scope of this paper. See [5] for a
good introduction to this topic.

These requirements pose challenging problems for
computer vision. No general purpose solutions are
known. The rest of this paper describes some attempts
at solving the task outlined above. The approach is
quite specific to hand tracking but will hopefully lead
to insights that are more generally applicable.

2 A Four Degree of Freedom Hand
Tracker

We now describe the first version of our system, im-
plemented in 1992 at Siemens Central Research, Mu-
nich. This system is able to reliably track a normal
(unmarked and unencumbered) hand in real time. Un-
like [4, 5] the system is relatively insensitive to image
clutter and extracts three dimensional positional infor-
mation. This version of the tracker can run on a stan-
dard Sun Sparcstation 10 at a speed of 30 frames per
second, without any special image processing hard-
ware other than a framegrabber. (A previous version
of the system required a person to wear a specially
marked cotton glove[8].) There are essentially two
parts to the system: a segmentation module and a
control strategy. These are described in turn below.

2.1 Color Histogram Based Segmentation

Given sequences of camera images, an important
task of the system is to separate the target hand from
the background. The main challenge is to build a seg-
mentation module that is insensitive to normal back-
grounds and that operates in real-time. This 1s not an
easy task as the image may contain many irrelevant
and confusing details (See Figure 1).

Our algorithm works by estimating the distribution
of skin colors on a person’s hand. This information is
then used to detect which parts of the image belong
to the hand and which are part of the background.
The hope is that as long as the objects in the scene
do not have the same color distribution as the user’s
hand the segmentation will be relatively clean.

2.1.1 Constructing the Histogram

A color-histogram is used to estimate the distribution
of colors in a patch of skin. The basic idea behind a
color histogram is to partition RGB color space into
a number of bins. To train the system we select a
patch of skin from an image (by a “patch” we mean
a small square region in the image). From the set of

Figure 1: Example of a typical image with a hand.
Note the complex background which the system has
to ignore.

pixels in this patch, a color histogram is constructed
by counting the number of pixels that fall into each
bin. By computing a histogram of sample patches
from the skin in this way, the system essentially con-
structs a rough estimate of the probability distribution
of colors in the skin. Instead of RGB space we use a
normalized 2D space that tends to eliminate the ef-
fects of varying illumination. Given an example skin-
colored pixel, with color values r; g, and b, we com-
pute its normalized colors as v/ = r/(r+ g+ b+ 1)
and ' =b/(r+ g+ b+ 1). These give values between
0 and 1 and can be thought of as computing the per-
centage of red and percentage of blue. Each of the
dimensions ' and b’ are discretized by a factor of d.
The histogram is then a d x d array.

2.1.2 Histogram Based Segmentation

At run time the tracking system repeatedly matches
small patches of the image to the stored histogram us-
ing a matching algorithm. To match two histograms,
the histogram intersection algorithm [7] is used. The
match score M between histograms p and ¢ is defined
as:

- S, 105
Zi,j Hr (i, j)

(1)

Those patches whose score is above a threshold (typ-
ically 0.9) are skin-colored and assumed to belong to

the hand.

Once each image is segmented, a list of patches in
the image which match the stored histogram is cre-
ated. Each patch has associated with it a center and
an area. Figure 2 shows an example segmentation
given the image in Figure 1. Each small square rep-
resents one patch. As can be seen, the color-based
segmentation results in a clean separation of the hand
from the background.

n

g

Figure 2: The result of segmenting a hand with a color
histogram. Each small unfilled rectangle represents
one segmented patch. The filled square represents the
center of mass, the line represents the hand’s orienta-
tion, and the inner large rectangle the search region
for the next frame.

2.1.3 Extracting 3D Position

After the segmentation process, it is possible to ex-
tract the 3D location and 2D orientation of the hand.
The center of mass of the segmented patches is used
as the 2D position of the hand: C, = >, pin/N
and Cy = >, piy/N where N is the total number of
patches that were considered part of the hand, and p;;
and p;, denote the x and y coordinate of the center of
the ¢’th patch.

The planar rotation (rotation about the camera
axis) is estimated by fitting an ellipse to the segmented
patches and computing the angle of its principal axis.
This can be done by computing the second order mo-
ments of the patches:

Mmoo = Z(Cx — piz)” (2)
Moz = Z(Cy - piy)2 (3)
mip = Z(Cy - pzy)(cx - pix) (4)

Then the orientation of the principal axis is given by:
1
0 = - tan™*(

. (5)

To smooth out noise we compute a moving average
for each of the above parameters. The small filled
square and the oblique line in Figure 2 depict the com-
puted center of mass and orientation, respectively, of
the hand in Figure 1.

Since we are only using one camera, it is difficult
to obtain accurate estimates of the absolute distance
of the hand to the camera. However, as an interface,
it is sufficient to compute the relative depth (i.e. the
depth relative to some standard location). With this
information it is possible to tell whether the target
is coming closer or moving further away. One way

Mmoo — Mo2
2m11

to compute this is to simply count the total area of
the segmented patches. As the target moves closer it
will occupy a larger section of the image and the total
patch area will increase. However this 1s susceptable to
interference from transient noise patches. We obtain
more robust estimates by weighting the area of the
patches by a Gaussian placed on the center of mass:

_ _(Cx _pix)z - (C -
A —APZGXP(5 ¥

)

paly ()

Here Ap is the area that each patch is responsible for
and S is a scaling constant.

Computing relative distance in this way requires a
simple calibration step. On the first image the hand
is assumed to be at some canonical position. The ini-
tial area, Ag, is computed for the initial frame and
stored. Then on subsequent frames, depth estimates
are obtained by computing the instantaneous area and

comparing it with Ag: C, = %. This quantity will
be 1 if the target is exactly at the same position as
in the calibration frame. The value will get smaller
as the target approaches the camera, and larger as
it moves away. Thus it provides an estimate of the

relative distance of the target from the camera.

2.2 Control Strategies

Although the above computations can be carried
out reasonably efficiently, in order to obtain real-time
performance on our system (a Sun Sparcstation), two
resource allocation techniques were used. These in-
clude a dynamic search window, and a technique for
adaptive subsampling. Without these techniques the
tracking algorithm can achieve a maximum frame rate
of about 8 — 10 frames/second. The next few sections
describe these aspects of the system.

2.2.1 Modifying the Search Region

A dynamic search region is implemented to ignore
irrelevant regions of the image. The system main-
tains a rectangular tracking window around segmented
patches. For each subsequent frame only image
patches within this window are searched. At each iter-
ation, given the current segmentation, the boundaries
for the search region for the next frame are computed
as follows:

LTmin = HllIlZ (sz) - b and Tmar = Max; (sz) - b

Ymin = Miny (sz) b and ymas = HlaXz(sz)
Thus at the next frame, only the image pixels in the
rectangle defined by (J:mm, Ymin) and (Tmaz, Ymar) aTE
searched. The constant b (we use a value of 40 pixels)
ensures that the window is slightly larger than the
actual target boundaries.

2.2.2 Adaptive Subsampling

It is not necessary to check every pixel within the
search window. Indeed it 1s too time consuming to do
so. In order to speed things up, the system subsamples
the image. That is, once an image patch at location
(z,y) is checked, the next patch is chosen starting at

location (z + s,y). (If the end of the scan line has
been reached, then the patch starting at (0,y + s) is
checked.) The issue of determining the best subsam-
pling constant, s, is important but non-trivial. Sub-
sampling affects both the accuracy and the speed of
the tracking. If s is too large than the position esti-
mates discussed in the last section will be too noisy.
If s is too small then too much time will be taken up
processing each image.

Rather than use predetermined s, the system uses
an adaptive technique to automatically select the best
subsampling. The key is to allow the client application
which is using the tracker to specify a goal frame rate.
The segmentation module then continuously monitors
its speed. If the segmentation time 1s faster than de-
sired, then s is decreased. Conversely, if the time is
slower than desired then s is increased to give greater
speed.

2.2.3 Balancing Accuracy and Speed at Vary-
ing Depths

The above two techniques also solve a common prob-
lem concerned with the three-way interaction between
accuracy, speed, and depth. In particular, when the
target is close to the camera, the resulting image of
the hand is large. In this case, the search window will
be large, requiring more processing time per frame.
s will be automatically increased, maintaining system
throughput. When the target is far from the camera,
the resulting image is small and so a smaller value of
s 18 required in order to maintain accuracy. In this
case the search window will be correspondingly small,
requiring less processing per frame, and so the sub-
sampling will be automatically decreased. The end
result is that the system maintains relatively constant
accuracy and speed at different depths. (It is easy to
see that no fixed value of s can achieve this result.)

2.3 Using the Hand Tracker as a User In-
terface

The tracking system has been used to successfully
navigate in virtual environments. Figure 3 shows the
setup. The camera images the hand from above. Hand
movements are transmitted to a real time VR simula-
tor so that by moving his or her hand the user is able
to translate in all six directions (up, down, left, right,
forward, and backward) and rotate the view clockwise
or counterclockwise. A 3D rendering of the hand pro-
vides positional feedback to the user for navigation.
By including objects in the world that perform actions
when touched the user is able to actually manipulate
both the internal and external world. For example, we
have implemented a CD player control panel, which
when touched, plays back music using a CD ROM.

3 A 19 Degree of Freedom Hand
Tracker

So far we have described a system that is able to
track the 3D position and planar orientation of the
hand. It i1s also of interest to recover the complete
configuration of the hand. From a computer vision
point of view, this is a very difficult task as the hand

Figure 3: The view of the hand tracking setup.

Fingertip
($f’ yf)

Finger base (0,0)

Figure 4: A model of the joint angles in a finger.

contains about 20 degrees of freedom (each finger con-
tains four degrees of freedom: two joints with one de-
gree of freedom and one joint, the base, with two).
This section describes one approach for recovering the
required information from the image.

3.1 Recovering Joint Angles

Figure 4 shows a schematized side view of a finger
and its joints (the fourth degree of freedom, moving a
finger from side to side is not considered here). Given
the joint angles #; and finger segment lengths I;, we
can easily compute the location of the fingertip:

x; =l cos(01) + ls cos(62) + I3 cos(f3) (7)
yr = lisin(f1) + {2 sin(82) + I3 sin(fs) (8)

This 1s complicated by the fact that not every point in
joint space is realizable with our fingers. For example,
although there are three joints shown, the finger can
only cover a two dimensional space. Even in 2D space,
not every point is reachable (e.g. we cannot bend our
finger backward). Tt turns out that if location of the
fingertip is known, the set of possible joint angles is
actually very constrained. This implies that, given the
location of the fingertips, it is theoretically possible to

approximately compute the actual joint angles. Un-
fortunately it is difficult to do this directly: there does
not seem to be a closed form analytic expression for
the inverses to equations (7) and (8) that can easily
incorporate the joint angle constraints.

The approach we have taken has been to learn the
inverse mapping. The idea is that the forward model
is easy to compute. Given the 3 angles and knowledge
of the segment lengths, we can compute the location of
the fingertip from equations (7) and (8). So it is pos-
sible to construct a training set with pairs of vectors
consisting of joint angles and corresponding fingertip
locations. Using this training set, we can simply train
a function approximator to compute the inverse map.

This turns out to be quite successful. For our
purposes the best results were obtained using near-
est neighbor approximation. That is given a fingertip
location, locate the closest fingertip in the training
set and select the corresponding joint angles. Using
kd-trees one can implement nearest neighbor very ef-
ficiently [2]. Average retrieval time is O(logn) where
n is the number of vectors in the training set.

3.2 Fingertip Detection

The joint angle recovery has been incorporated
within the hand tracking system described earlier. In
order to do this a “fingertip detector” had to be imple-
mented. For efficiency reasons we decided on fitting a
very coarse model of the hand to the segmented im-
age patches. The palm is represented as a circle; the
fingers are represented by lines emanating from the
center of the wrist. The lines are allowed to rotate
around the wrist center. To fit such a model we need
to locate the radius of the palm and determine the
angles and lengths of each finger.

In order to locate the circle representing the palm,
the current system assumes that the center of the palm
is at the center of mass. This 1s not completely accu-
rate but is a reasonable assumption as long as the arm
does not also appear in the segmented patches (i.e. the
person should wear a full sleeved shirt). In order to
find the palm the system computes the largest circle
such that the area of all patches within the circle is
roughly the same as the actual area of the circle.

Once the palm is located, the fingertips need to be
detected. Every patch that is outside the circle could
be part of a finger. In a human hand the finger bones
emanate from a central point on the wrist. Thus the
angles of the fingers (especially the thumb) are best
measured from the wrist center. This point is obtained
by projecting the center of mass backwards along the
orientation of the hand to the edge of the circle.

In order to locate the actual angle of each finger we
have used a Hough transform based approach. The
set of possible angles are discretized into a number
of bins. Each patch outside the circle has associated
with it an angle to the wrist center and votes for this
angle. Within each bin the system also keeps track
of the patch with maximal distance that had voted
for 1t. After the voting process the five best peaks in
the histogram are selected and the maximal patch is
chosen as the fingertip location.

3.3 Real Time Finger Modeling

The fingertip detector and joint angle recovery
modules have been combined to obtain a real time
system for approximating the user’s finger movements.
The system works, as before, by using the first frame
as a calibration frame. In this frame the users hand
is assumed to be flat with all fingers extended. The
depth of the hand and the maximal length of each
finger are stored. Then on each subsequent frame,
each fingertip is located. Treating each finger inde-
pendently, the system uses the joint angle module to
output the joint angles for each finger to a visualizer.
Each finger is only allowed three degrees of freedom
(fingers are not allowed to wiggle from side to side).
This results in 15 degrees of freedom for the fingers.
Combined with the position and angle estimates leads
to a total of 19 degrees of freedom. The combined
system can run at a rate of 10 frames per second
on a SparcStation 10. Although it often works well,
this system unfortunately is not as stable as the hand
tracker. This is due in part to failures in detecting the
fingertip when the user’s hand is not approximately
parallel to the camera plane. When the fingertips are
detected correctly then the visualizer shows a reason-
able interpretation of the user’s fingers moving around.
Further research needs to be conducted on the feature
detection stage.

4 Discussion

This paper has described initial steps towards
building a complete hand recognition system based
on computer vision. There are still several drawbacks
of the systems described above. First, only rotations
parallel to the camera plane are recovered. Rotating
the hand around the other two axes can confuse the
system. Second, although the system is quite insen-
sitive to the image background, only one skin colored
object may be present in the image at any one time.
This means that the system cannot yet handle two
hands in the image. Finally, the system for recovering
joint angles occasionally has problems detecting the
fingertip, mainly due to the limitations of the hand
model used.

Apart from these disadvantages, the systems are
quite stable and robust, particularly the position and
orientation tracking component. There is typically
very little noise in the position estimates. The ap-
proach based on fitting a set of patches to a model
has proven to be very robust to noise in the segmenta-
tion process. Finally, the speed of the system provides
the user with rapid feedback, an important factor in
interactive systems.

How far away are we from full scale 3D hand track-
ing? There are a number of outstanding problems
that must be solved. There are still no general al-
gorithms for dealing with self-occlusion, for modeling
non-rigid objects, and for determining the pose of non-
rigid objects. Adaptive techniques based on density
estimation[1] and on estimating the surface that data
points lie on[3] appear promising. Although the task
is formidable, the results outlined here provide some
hope that vision based algorithms can eventually lead
to non-obstrusive and natural 3D user interfaces.

Acknowledgements

Portions of this research were done at Siemens Cen-
tral Research, Munich, Germany. 1 thank Daniel
Goryn, Christoph Maggioni, Rolf Schuster, Brigitte
Wirtz and Volker Tresp for helpful comments and sug-
gestions.

References

[1] S. Ahmad and V. Tresp. Some solutions to the
missing feature problem in vision. In S.J. Hanson,
J.D. Cowan, and C.L. Giles, editors, Advances in
Neural Information Processing Systems 5, pages

393-400. Morgan Kaufmann Publishers, 1993.

[2] J.L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of

the ACM, 18(9):509-517, 1975.

[3] Christoph Bregler and Stephen M. Omohundro.
Surface learning with applications to lipreading.
In J.D. Cowan, G. Tesauro, and J. Alspector, ed-
itors, Advances in Neural Information Processing
Systems 6, pages 43-50. Morgan Kaufmann Pub-
lishers, 1994.

[4] M.W. Krueger.
Wesley, 1991.

Artifictal Reality II. Addison-

[5] J. Segen. Model learning and recognition of non-
rigid objects. In TEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,

San Diego, CA, 1989.

[6] J.M. Stroud. The fine structure of psychological
time. In H. Quastler, editor, Information theory
i psychology. Free Press, Glencoe, I1l.; 1956.

[7] M.J. Swain and D.H. Ballard. Color indexing. In-
ternational Journal of Computer Vision, 7:11-32,
1991.

[8] B. Wirtz and C. Maggioni. Imageglove: A novel
way to control virtual environments. In Proceed-
wngs of Virtual Reality Systems 93, New York,
1993.

[9] T.G. Zimmermann, J. Lanier, C. Blanchard, and
S. Bryson. A hand gesture interface device. In
Proceedings ACM CHI+GI Conference: Human
Factors in Computing Systems and Graphics In-
terface, pages 189-192, 1987.

